GLUT4 expression and subcellular localization in the intrauterine growth-restricted adult rat female offspring.

نویسندگان

  • Manikkavasagar Thamotharan
  • Bo-Chul Shin
  • Dilika T Suddirikku
  • Shanthie Thamotharan
  • Meena Garg
  • Sherin U Devaskar
چکیده

Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring.

To determine mechanisms underlying the transgenerational presence of metabolic perturbations in the intrauterine growth-restricted second-generation adult females (F2 IUGR) despite normalizing the in utero metabolic environment, we examined in vivo glucose kinetics and in vitro skeletal muscle postinsulin receptor signaling after embryo transfer of first generation (F1 IUGR) to control maternal...

متن کامل

Early exercise regimen improves insulin sensitivity in the intrauterine growth-restricted adult female rat offspring.

We examined the effect of early exercise training (Ex) on glucose kinetics, basal, and insulin-stimulated skeletal muscle (SKM) plasma membrane (PM) GLUT4 in pre- and/or postnatal nutrient-restricted adult rat offspring compared with sedentary (Sed) state. Pregestational control female (Ex CON vs. Sed CON) and offspring exposed to prenatal (Ex IUGR vs. Sed IUGR), postnatal (Ex PNGR vs. Sed PNGR...

متن کامل

Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring.

Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), post...

متن کامل

Peroxisome proliferator-activated receptor-gamma agonist improves skeletal muscle insulin signaling in the pregestational intrauterine growth-restricted rat offspring.

The effect of early intervention with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on skeletal muscle GLUT4 translocation and insulin signaling was examined in intrauterine (IUGR) and postnatal (PNGR) growth-restricted pregestational female rat offspring. Rosiglitazone [11 mumol/day provided from postnatal day (PN)21 to PN60] improved skeletal muscle insulin sensitivit...

متن کامل

Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring.

Placental insufficiency in the rat results in intrauterine growth restriction and development of hypertension in prepubertal male and female growth-restricted offspring. However, after puberty, only male growth-restricted offspring remain hypertensive, whereas female growth-restricted offspring stabilize their blood pressure to levels comparable to adult female controls. Because female rats rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 288 5  شماره 

صفحات  -

تاریخ انتشار 2005